Isolated eigenvalues of linear operator and perturbations

Slaviša Djordjević
Benemérita Universidad Autónoma de Puebla

WCAOS 2010, September 2–4.
Throughout this talk let X be a Banach space and $B(X)$ be the set of bounded linear operators acting on X.

For $T \in B(X)$ the spectrum of T is defined by

$$\sigma(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible} \}$$

and the resolvent set

$$\rho(T) = \mathbb{C} \setminus \sigma(T).$$

The complex number λ is called an eigenvalue of T if exists a non-zero vector $x \in X$ such that $T x = \lambda x$ (or equivalent $(T - \lambda I)x = 0$). The set of all eigenvalues of T we denote $\sigma_p(T)$.
Throughout this talk let X be a Banach space and $B(X)$ be the set of bounded linear operators acting on X.

For $T \in B(X)$ the spectrum of T is defined by

$$
\sigma(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible} \}
$$

and the resolvent set

$$
\rho(T) = \mathbb{C} \setminus \sigma(T).
$$

The complex number λ is called an eigenvalue of T if exists a non-zero vector $x \in X$ such that $Tx = \lambda x$ (or equivalent $(T - \lambda I)x = 0$). The set of all eigenvalues of T we denote $\sigma_p(T)$.
\[\Lambda \subset \sigma(T) \] is called spectral set for \(T \) if both \(\Lambda \) and \(\sigma(T) \setminus \Lambda \) are closed in relative topology of \(\sigma(T) \).

For a spectral set \(\Lambda \) of \(T \) with \(C(T, \Lambda) \) we denote the set of all Cauchy contour \(C \) which separate \(\Lambda \) from \(\sigma(T) \setminus \Lambda \).

For \(z \in \rho(T) \),

\[R(T, z) = (T - zI)^{-1} \]

is called the resolvent operator of \(T \) at \(z \).
The set $\Lambda \subset \sigma(T)$ is called spectral set for T if both Λ and $\sigma(T) \setminus \Lambda$ are closed in relative topology of $\sigma(T)$.

For a spectral set Λ of T with $C(T, \Lambda)$ we denote the set of all Cauchy contour C which separate Λ from $\sigma(T) \setminus \Lambda$.

For $z \in \rho(T)$,

$$R(T, z) = (T - zI)^{-1}$$

is called the resolvent operator of T at z.
\begin{itemize}
 \item \(\Lambda \subset \sigma(T) \) is called spectral set for \(T \) if both \(\Lambda \) and \(\sigma(T) \setminus \Lambda \) are closed in relative topology of \(\sigma(T) \).

 \item For a spectral set \(\Lambda \) of \(T \) with \(C(T, \Lambda) \) we denote the set of all Cauchy contour \(C \) which separate \(\Lambda \) from \(\sigma(T) \setminus \Lambda \).

 \item For \(z \in \rho(T) \),
 \[R(T, z) = (T - zI)^{-1} \]
 is called the resolvent operator of \(T \) at \(z \).
\end{itemize}
For a spectral set Λ for $T \in B(X)$ and $C \in C(T, \Lambda)$, define

$$P(T, \Lambda) = -\frac{1}{2\pi i} \int_C R(T, z)dz$$

a bounded projection of T and Λ.

For $\lambda \in \sigma(T)$ we say that is Riesz point of T if λ is an isolated eigenvalues of T of finite algebraic multiplicity (or $\dim P(T, \lambda)(X) < \infty$).

For an isolated eigenvalue λ of T we say that has finite geometric multiplicity if $\dim N(T - \lambda I) < \infty$.

Let $\pi_0(T)$ denote the set of Riesz points of T and let $\pi_{00}(T)$ denote the set of eigenvalues of T of finite geometric multiplicity.
For a spectral set Λ for $T \in B(X)$ and $C \in C(T, \Lambda)$, define

$$P(T, \Lambda) = -\frac{1}{2\pi i} \int_C R(T, z)dz$$

a bounded projection of T and Λ.

For $\lambda \in \sigma(T)$ we say that is Riesz point of T if λ is an isolated eigenvalues of T of finite algebraic multiplicity (or $\dim P(T, \lambda)(X) < \infty$).

For an isolated eigenvalue λ of T we say that has finite geometric multiplicity if $\dim N(T - \lambda I) < \infty$.

Let $\pi_0(T)$ denote the set of Riesz points of T and let $\pi_{00}(T)$ denote the set of eigenvalues of T of finite geometric multiplicity.
For a spectral set Λ for $T \in B(X)$ and $C \in C(T, \Lambda)$, define

$$P(T, \Lambda) = -\frac{1}{2\pi i} \int_C R(T, z)dz$$

a bounded projection of T and Λ.

For $\lambda \in \sigma(T)$ we say that is Riesz point of T if λ is an isolated eigenvalues of T of finite algebraic multiplicity (or $\dim P(T, \lambda)(X) < \infty$).

For an isolated eigenvalue λ of T we say that has finite geometric multiplicity if $\dim N(T - \lambda I) < \infty$.

Let $\pi_0(T)$ denote the set of Riesz points of T and let $\pi_{00}(T)$ denote the set of eigenvalues of T of finite geometric multiplicity.
For a spectral set Λ for $T \in B(X)$ and $C \in \mathcal{C}(T, \Lambda)$, define

$$P(T, \Lambda) = -\frac{1}{2\pi i} \int_C R(T, z)dz$$

a bounded projection of T and Λ.

For $\lambda \in \sigma(T)$ we say that is Riesz point of T if λ is an isolated eigenvalues of T of finite algebraic multiplicity (or $\dim P(T, \lambda)(X) < \infty$).

For an isolated eigenvalue λ of T we say that has finite geometric multiplicity if $\dim N(T - \lambda I) < \infty$.

Let $\pi_0(T)$ denote the set of Riesz points of T and let $\pi_{00}(T)$ denote the set of eigenvalues of T of finite geometric multiplicity.
It is known that $\pi_0(T) \subset \pi_{00}(T)$.

An eigenvalue $\lambda \in \pi_0(T)$ is called simple eigenvalues if $\dim P(T, \lambda) = 1$, or equivalent $X = \mathcal{N}(T - \lambda I) \oplus \mathcal{R}(T - \lambda I)$.
It is known that $\pi_0(T) \subset \pi_{00}(T)$

An eigenvalue $\lambda \in \pi_0(T)$ is called simple eigenvalues if $\dim P(T, \lambda) = 1$, or equivalent $X = \mathcal{N}(T - \lambda I) \oplus \mathcal{R}(T - \lambda I)$.
Motivation: Approximation of simple eigenvalues for bounded operators

- **Remark.** If \(\lambda \in \pi_0(T) \), then there exists a sequence \(\lambda_n \in \pi_0(T_n) \) such that \(\lambda_n \to \lambda \) and \(\dim P(T, \lambda) = \dim P(T_n, \lambda_n) \).

Refinement schemes for a simple eigenvalue

- **Theorem.** Let \(\lambda \) be a simple eigenvalue of \(T \) and \(\phi \) be a corresponding eigenvector. Assume that \(T_n \to T \).

Then for each large enough \(n \), \(T_n \) has a unique simple eigenvalue \(\lambda_n \) such that \(\lambda_n \to \lambda \).
Remark. If $\lambda \in \pi_0(T)$, then there exists a sequence $\lambda_n \in \pi_0(T_n)$ such that $\lambda_n \to \lambda$ and $\dim P(T, \lambda) = \dim P(T_n, \lambda_n)$.

Refinement schemes for a simple eigenvalue

Theorem. Let λ be a simple eigenvalue of T and ϕ be a corresponding eigenvector. Assume that $T_n \longrightarrow T$.

Then for each large enough n, T_n has a unique simple eigenvalue λ_n such that $\lambda_n \to \lambda$.
Let \(\phi_n \) be an eigenvector of \(T_n \) corresponding to \(\lambda_n \) and \(\phi_n^* \) be the eigenvector of \(T_n^* \) corresponding to its eigenvalue \(\lambda_n^* \) such that \(\langle \phi_n, \phi_n^* \rangle = 1 \). Then \(\langle \phi, \phi_n^* \rangle \neq 0 \) for all large \(n \). If we let

\[
\phi(n) = \frac{\phi}{\langle \phi, \phi_n^* \rangle}
\]

then for all large \(n \), we have

\[
\max \left\{ |\lambda_n - \lambda|, \frac{\|\phi_n - \phi(n)\|}{\|\phi_n\|} \right\} \leq c\|T_n - T\|
\]

and if \(\lambda \neq 0 \), then

\[
\max \left\{ |\lambda_n - \lambda|, \frac{\|\phi_n - \phi(n)\|}{\|\phi_n\|} \right\} \leq c\|(T_n - T)T\|
\]

where \(c \) is a constant, independent of \(n \).
Finite rank approximations

Let X be a complex Banach space and T a bounded linear operator. With some extra conditions, for example if T is a compact operator, or X has Schauder basis, we can find $\{T_n\}$ a sequence of finite rank operators such that T_n converge in norm to T. Since rank of operators T_n are finite, then the spectral computations for T_n can be reduced to solving a matrix eigenvalue problem in a canonical way. For this reason we will present various situations when we can apply this technics.

Examples

Approximation based on projections

Let \((\pi_n)\) be a sequence of bounded linear projection defined on a Banach space \(X\). Define:

\[T_n^P = \pi_n T, \quad T_n^S = T \pi_n \text{ and } T_n^G = \pi_n T \pi_n. \]

The bounded operators \(T_n^P\), \(T_n^P\) and \(T_n^P\) are known as the projection approximation of \(T\), Sloan approximation of \(T\) and Galerkin approximation of \(T\), respectively.

Theorem. Let \(T \in B(X)\) and \(\pi_n(x) \to x(= I(x))\). Then

- If \(T\) is compact operator, then \(T_n^P \to T\);
- If \(T\) is compact operator and \(\pi_n^*(\cdot) \to I^*(\cdot)\), then \(T_n^S \to T\) and \(T_n^G \to T\).
Truncation of a Schauder expansion

Assume that X has a Schauder basis (e_i). For each positive integer n define

$$\pi_n(x) = \sum_{j=1}^{n} c_j(x)e_j, \quad x \in X.$$

Then for $T \in B(X)$ such that $Te_j = \sum_{j=1}^{\infty} t_{i,j}e_i, \quad j = 1, 2, \ldots$ we have

$$T^P_n e_j = \sum_{j=1}^{n} t_{i,j}e_i, \quad j = 1, 2, \ldots$$

$$T^S_n e_j = \begin{cases} \sum_{j=1}^{\infty} t_{i,j}e_i, & j = 1, 2, \ldots, n \\ 0, & j > n. \end{cases}$$

$$T^G_n e_j = \begin{cases} \sum_{j=1}^{n} t_{i,j}e_i, & j = 1, 2, \ldots, n \\ 0, & j > n. \end{cases}$$
$K(X)$ denotes the ideal of all compact operators

- $\alpha(T) = \dim N(T); \quad \beta(T) = \dim(X/R(T))$

- $\phi_+(X) = \{T \in B(X) : R(T) \text{ is closed and } \alpha(T) < \infty\}$
 $\phi_-(X) = \{T \in B(X) : \beta(T) < \infty\}$

An operator $T \in B(H)$ is called semi-Fredholm if $T \in \phi_+(X) \cup \phi_-(X)$

An operator $T \in B(H)$ is called Fredholm if $T \in \phi_+(X) \cap \phi_-(X)$

The index of $T \in \phi_+(X) \cup \phi_-(X)$ is given by $\text{ind}(T) = \alpha(T) - \beta(T)$.

 Localization of eigenvalues of linear operators

- $K(X)$ denotes the ideal of all compact operators

- $\alpha(T) = \dim N(T); \quad \beta(T) = \dim(X/R(T))$

- $\phi_+(X) = \{T \in B(X) : R(T) \text{ is closed and } \alpha(T) < \infty\}$
 $\phi_-(X) = \{T \in B(X) : \beta(T) < \infty\}$

- An operator $T \in B(H)$ is called semi-Fredholm if $T \in \phi_+(X) \cup \phi_-(X)$
 An operator $T \in B(H)$ is called Fredholm if $T \in \phi_+(X) \cap \phi_-(X)$

- The index of $T \in \phi_+(X) \cup \phi_-(X)$ is given by $\text{ind}(T) = \alpha(T) - \beta(T)$.
$K(X)$ denotes the ideal of all compact operators

$\alpha(T) = \dim N(T); \quad \beta(T) = \dim(X/R(T))$

$\phi_+(X) = \{T \in B(X) : R(T) \text{ is closed and } \alpha(T) < \infty\}$

$\phi_-(X) = \{T \in B(X) : \beta(T) < \infty\}$

An operator $T \in B(H)$ is called \textit{semi-Fredholm} if $T \in \phi_+(X) \cup \phi_-(X)$

An operator $T \in B(H)$ is called \textit{Fredholm} if $T \in \phi_+(X) \cap \phi_-(X)$

The \textit{index} of $T \in \phi_+(X) \cup \phi_-(X)$ is given by $\text{ind}(T) = \alpha(T) - \beta(T)$.
$K(X)$ denotes the ideal of all compact operators

$\alpha(T) = \dim N(T); \quad \beta(T) = \dim(X/R(T))$

$\phi_+(X) = \{T \in B(X) : R(T) \text{ is closed and } \alpha(T) < \infty\}$

$\phi_-(X) = \{T \in B(X) : \beta(T) < \infty\}$

An operator $T \in B(H)$ is called **semi-Fredholm** if $T \in \phi_+(X) \cup \phi_-(X)$

An operator $T \in B(H)$ is called **Fredholm** if $T \in \phi_+(X) \cap \phi_-(X)$

The *index* of $T \in \phi_+(X) \cup \phi_-(X)$ is given by $\text{ind}(T) = \alpha(T) - \beta(T)$.
\(K(X) \) denotes the ideal of all compact operators

- \(\alpha(T) = \dim N(T); \quad \beta(T) = \dim \left(\frac{X}{R(T)} \right) \)

- \(\phi_+(X) = \{ T \in B(X) : R(T) \text{ is closed and } \alpha(T) < \infty \} \)
 \(\phi_-(X) = \{ T \in B(X) : \beta(T) < \infty \} \)

- An operator \(T \in B(H) \) is called semi-Fredholm if \(T \in \phi_+(X) \cup \phi_-(X) \)
 An operator \(T \in B(H) \) is called Fredholm if \(T \in \phi_+(X) \cap \phi_-(X) \)

- The index of \(T \in \phi_+(X) \cup \phi_-(X) \) is given by \(\text{ind}(T) = \alpha(T) - \beta(T) \).
Weyl’s theorem

- \(\phi_0(X) = \{ T \in B(X) : T \in \phi(X) \text{ and } \text{ind}(T) = 0 \} \) – Weyl operators

- Weyl spectrum by \(\sigma_w(A) = \{ \lambda \in \mathbb{C} : T - \lambda \notin \phi_0(X) \} \)

- \(\sigma_w(T) = \cap \{ \sigma(T + K) : K \in K(X) \} \)

- \(\lambda \) belongs to the spectra of all compact perturbations \(T + K \) of a single hermitian operator \(T \) if and only if \(\lambda \) is not an isolated eigenvalue of finite multiplicity

- We say that \(T \) obeys Weyl’s theorem if \(\sigma_w(T) = \sigma(T) \setminus \pi_{00}(T) \)

- Browder’s theorem if \(\sigma_w(T) = \sigma(T) \setminus \pi_0(T) \)
Weyl’s theorem

- $\phi_0(X) = \{T \in B(X) : T \in \phi(X) \text{ and } \text{ind}(T) = 0\}$ – Weyl operators

- Weyl spectrum by $\sigma_w(A) = \{\lambda \in \mathbb{C} : T - \lambda \notin \phi_0(X)\}$

 $$\sigma_w(T) = \cap \{\sigma(T + K) : K \in K(X)\}$$

- λ belongs to the spectra of all compact perturbations $T + K$ of a single hermitian operator T if and only if λ is not an isolated eigenvalue of finite multiplicity

- We say that T obeys Weyl’s theorem if
 $$\sigma_w(T) = \sigma(T) \setminus \pi_{00}(T)$$

 Browder’s theorem if
 $$\sigma_w(T) = \sigma(T) \setminus \pi_0(T)$$
Weyl’s theorem

- $\phi_0(X) = \{T \in B(X) : T \in \phi(X) \text{ and } \text{ind}(T) = 0\}$ – **Weyl operators**

- **Weyl spectrum** by $\sigma_w(A) = \{\lambda \in \mathbb{C} : T - \lambda \notin \phi_0(X)\}$

 $$\sigma_w(T) = \bigcap \{\sigma(T + K) : K \in K(X)\}$$

- λ belongs to the spectra of all compact perturbations $T + K$ of a single hermitian operator T if and only if λ is not an isolated eigenvalue of finite multiplicity

- We say that T obeys **Weyl’s theorem** if $\sigma_w(T) = \sigma(T) \setminus \pi_{00}(T)$

 Browder’s theorem if $\sigma_w(T) = \sigma(T) \setminus \pi_0(T)$
Weyl’s theorem

- \(\phi_0(X) = \{ T \in B(X) : T \in \phi(X) \text{ and } \text{ind}(T) = 0 \} \) – Weyl operators

- Weyl spectrum by \(\sigma_w(A) = \{ \lambda \in \mathbb{C} : T - \lambda \notin \phi_0(X) \} \)
 \[\sigma_w(T) = \cap \{ \sigma(T + K) : K \in K(X) \} \]

- \(\lambda \) belongs to the spectra of all compact perturbations \(T + K \) of a single hermitian operator \(T \) if and only if \(\lambda \) is not an isolated eigenvalue of finite multiplicity

- We say that \(T \) obeys Weyl’s theorem if \(\sigma_w(T) = \sigma(T) \setminus \pi_{00}(T) \)

 Browder’s theorem if \(\sigma_w(T) = \sigma(T) \setminus \pi_0(T) \)
Weyl’s theorem

- \(\phi_0(X) = \{ T \in B(X) : T \in \phi(X) \text{ and } \text{ind}(T) = 0 \} \) – Weyl operators

- Weyl spectrum by \(\sigma_w(A) = \{ \lambda \in \mathbb{C} : T - \lambda \notin \phi_0(X) \} \)
 \[\sigma_w(T) = \cap \{ \sigma(T + K) : K \in K(X) \} \]

- \(\lambda \) belongs to the spectra of all compact perturbations \(T + K \) of a single hermitian operator \(T \) if and only if \(\lambda \) is not an isolated eigenvalue of finite multiplicity

- We say that \(T \) obeys Weyl’s theorem if
 \[\sigma_w(T) = \sigma(T) \setminus \pi_{00}(T) \]

- Browder’s theorem if
 \[\sigma_w(T) = \sigma(T) \setminus \pi_0(T) \]
Weyl’s theorem

- \(\phi_0(X) = \{ T \in B(X) : T \in \phi(X) \text{ and } \text{ind}(T) = 0 \} - \text{Weyl operators} \)

- **Weyl spectrum** by \(\sigma_w(A) = \{ \lambda \in \mathbb{C} : T - \lambda \notin \phi_0(X) \} \)
 \[\sigma_w(T) = \cap \{ \sigma(T + K) : K \in K(X) \} \]

- \(\lambda \) belongs to the spectra of all compact perturbations \(T + K \) of a single hermitian operator \(T \) if and only if \(\lambda \) is not an isolated eigenvalue of finite multiplicity

- We say that \(T \) obeys **Weyl’s theorem** if \(\sigma_w(T) = \sigma(T) \setminus \pi_{00}(T) \)
 Browder’s theorem if \(\sigma_w(T) = \sigma(T) \setminus \pi_0(T) \)
Let H be a Hilbert space. An operator $T \in B(H)$ is

- normal if $TT^* = T^*T$, or $\|T^*x\| = \|Tx\|$, for each $x \in H$,

- $T \in B(H)$ is hyponormal if $TT^* \leq T^*T$, or $\|T^*x\| \leq \|Tx\|$, for each $x \in H$,

- $T \in B(H)$ is p-hyponormal if $(T^*T)^p - TT^*)^p \geq 0$ holds,

- T is quasi-hyponormal if $\|T^*Tx\| \leq \|T^2x\|$, for each $x \in H$.

Theorem. Let Hilbert space operators T or T^* are in one of the classes above. Then Weyl’s theorem holds for T ($\pi_{00}(T) = \pi_0(T)$).
Some classes of operators

Let H be a Hilbert space. An operator $T \in B(H)$ is

- normal if $TT^* = T^*T$, or $\|T^*x\| = \|Tx\|$, for each $x \in H$,

- $T \in B(H)$ is hyponormal if $TT^* \leq T^*T$, or $\|T^*x\| \leq \|Tx\|$, for each $x \in H$,

- $T \in B(H)$ is p-hyponormal if $((T^*T)^p - TT^*)^p \geq 0$ holds,

- T is quasi-hyponormal if $\|T^*Tx\| \leq \|T^2x\|$, for each $x \in H$.

Theorem. Let Hilbert space operators T or T^* are in one of the classes above. Then Weyl’s theorem holds for T ($\pi_{00}(T) = \pi_0(T)$).
Weyl's theorem for $T \rightsquigarrow$ Weyl's theorem for $T + K$
Weyl's theorem for $T \overset{?}{\rightarrow} T + K$

Theorem Weyl's theorem is transmitted from $T \in B(X)$ to $T + N$, when N is nilpotent operator commuting with T.
Theorem Weyl's theorem is transmitted from $T \in B(X)$ to $T + N$, when N is nilpotent operator commuting with T.

Example Let $X = \ell_2(\mathbb{N})$ and T and N be defined by:

\[
T(x_1, x_2, \ldots) = (0, \frac{x_1}{2}, \frac{x_2}{3}, \ldots)
\]

\[
N(x_1, x_2, \ldots) = (0, -\frac{x_1}{2}, 0, \ldots).
\]

Then T obeys Weyl's theorem, but $T + N$ not (T and N are not commuting).
Note In the previous example N is also a finite rank operator not commuting with T.
Note In the previous example N is also a finite rank operator not commuting with T.

Example In general, Weyl’s theorem is also not transmitted under commuting finite rank perturbation.

Let $X = \ell_2(\mathbb{N})$ and $S \in B(X)$ be an injective quasi-nilpotent operator and U be defined:

$$U(x_1, x_2, \ldots) = (-x_1, 0, \ldots).$$

Define on $Y = X \oplus X$ the operators T and K by

$$T = \oplus S \quad \text{and} \quad K = U \oplus O.$$

K is a finite rank operator commuting with T, T obeys Weyl’s theorem but $T + K$ not.

Theorem Suppose that $T \in B(H)$ is paranormal, K algebraic and $TK = KT$. Then Weyl’s theorem is transmitted on $T + K$.

Theorem Suppose that $T \in B(H)$ is paranormal, K algebraic and $TK = KT$. Then Weyl’s theorem is transmitted on $T + K$.

T is paranormal if $\|Tx\|^2 \leq \|T^2x\| \cdot \|x\|$.

K is algebraic if exists a polynomial p such that $p(K) = 0$.

Theorem Suppose that $T \in B(H)$ is paranormal, K algebraic and $TK = KT$. Then Weyl’s theorem is transmitted on $T + K$.

T is paranormal if $\|Tx\|^2 \leq \|T^2x\| \cdot \|x\|$.

K is algebraic if exists a polynomial p such that $p(K) = 0$.

Theorem Suppose that $T \in B(H)$ satisfies Weyl’s theorem. If $\sigma(T)$ has no holes and has at most finitely many isolated points then Weyl’s theorem holds for $T + K$ for every compact operator K.
Thank you.